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Abstract
Granulation is a process whereby a dense colloidal suspension is converted
into pasty granules (surrounded by air) by application of shear. Central to the
stability of the granules is the capillary force arising from the interfacial tension
between solvent and air. This force appears capable of maintaining a granule in
a jammed solid state, under conditions where the same amount of solvent and
colloid could also exist as a flowable droplet. We argue that in the early stages
of granulation the physics of dilatancy, which requires that a powder expand
on shearing, is converted by capillary forces into the physics of arrest. Using
a schematic model of colloidal arrest under stress, we speculate upon various
jamming and granulation scenarios. Some preliminary experimental results on
aspects of granulation in hard-sphere colloidal suspensions are also presented.

1. Introduction

There is obviously a connection between colloid physics and granular matter, but the
relationship is subtle when looked at in detail. Colloidal suspensions do not suffer static
interparticle friction and do have significant Brownian motion; this should make them much
more flowable than dry granular media. On the other hand, colloids occupy a fixed volume
of incompressible fluid: so long as they remain in a homogeneous bulk phase, they cannot
expand their volume under shear. Since dense powders must dilate before they can flow [1],
colloidal dynamics is impeded by this fixed-volume constraint.

It is known that hard-sphere colloids develop a yield stress at the glass transition,
empirically found at volume fraction φ = φg � 0.58. This number is well below random
close packing (φrcp = 0.64 [2, 3]) but suggestively close to the less well defined ‘random
loose packing’ limit which is, roughly speaking, the lowest density of dry grains capable of
sustaining solid-like behaviour [4]. Moreover φg is also quite close to the critical state volume
fraction φc above which dry grains must dilate in order to flow [4, 5]. However, no direct link
is yet known between the hard-sphere glass transition and either the random loose packing or
the critical state, although these two may well be related to one another [4].
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An interesting phenomenon which combines elements of colloidal and granular behaviour
is that of ‘granulation’ [6]1. In this process, a very dense colloidal suspension is subject to
sustained shearing. It is found that the sheared sample first jams, and then fractures into lumps
(with ingress of air, creating large amounts of air–solvent interface). These lumps rub against
each other, break, perhaps coalesce, and generally form a complicated mess, until eventually
the system settles down into a state with a relatively uniform and reproducible size distribution
for the lumps, by now dignified with the name ‘granules’. This process is used industrially in
the manufacture of products ranging from pharmaceutical preparations to washing powder [6].
A typical granule size might be tens to hundreds of microns, containing between hundreds,
and tens of thousands, of colloidal particles. Theoretical models of this process have been
widely developed in recent years [7] but these mainly address the evolution of the granule
size distribution using nucleation and growth and/or fragmentation and coalescence ideas,
often with a sophisticated dependence on parameters such as viscosity, contact angles, etc. In
this paper we ignore this aspect, despite its obvious technological importance. We address
instead the fundamental and neglected question of what is happening in the earliest stages of
granulation when a homogeneous suspension initially breaks up. We also address the physics
of the granules themselves, which turns out to be an intimately related question.

In fact, the granules created by the granulation process just described have fascinating
properties whose physical exploration is frustratingly incomplete in the literature. We
summarize here what can be gleaned from side remarks contained in papers primarily
addressing other issues [8, 9], and by private communication [11, 12]. Some of these
phenomena are reported in [8] for a low-density gelling colloid in which strong attractive
interactions are surely present,but below we report somewhat similar results for well controlled
hard-sphere colloids at concentrations close to their glass transition. Similar observations have
been made in suspensions of zeolite in amphiphilic solvents [11]. It is too soon to say whether or
not these features are ubiquitous in all granulating suspensions. The observed phenomenology
is, broadly speaking, as follows.

First, granules have a matt appearance to the eye, and under microscopy show irregularity
of surface shape and/or particles protruding through the interface. Second, they hold their
irregular shapes indefinitely. Third, granules are bistable: if a granule is placed on a plate
which is then vibrated, it melts from its irregular shape to a spherical one. At the same
time, the matt surface becomes glossy, showing that particles no longer protrude significantly
through it. (Colloidal particles have radii of the order of the wavelength of light, so protrusion
gives strong scattering.) The resulting object is, in fact, no longer a solid granule but a flowable
droplet. A similar and equally striking experiment involves placing such a melted droplet in
contact with a granule that is still frozen. In this case, the frozen granule is rapidly coalesced
and the result is a single, melted droplet of larger size [11]. Finally, a flowable spherical
droplet can sometimes be converted back into a misshapen granule with a matt surface, simply
by prodding it firmly with a spatula.

It is not yet clear whether the flowable droplet state is always strictly fluid, in the sense of
having finite zero-shear viscosity; this would require the conditions within the interior of the
droplet to be within the colloidal fluid phase. In some cases, the flowable droplet may instead
be in the glass phase (see sections 2, 3 below), but have a small enough yield stress that it
behaves as a fluid under the prevailing experimental conditions. In any case, it is much more
flowable than the granule it was derived from.

1 In a second type of granulation, fluid is added slowly to a sheared dry powder, normally suspended in air as a
fluidized bed. This is rather a different process which we do not address here, although once granules form, their
agglomeration and break-up behaviour under continuing shear may be similar. This paper concerns only granulation
by shear of a pre-existing dense suspension, sometimes called ‘high-shear mixer granulation’.
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Figure 1. Refractive index matched PMMA hard-sphere suspension, particle radius ≈270 nm, at
volume fraction � ≈ 0.63, sheared in a transparent cylindrical Couette cell, gap width 0.5 mm,
shear rate γ ≈ 17 s−1. The arrow shows the top surface of the suspension, above which the gap is
filled with air. At this shear rate the flow is regular.

These results shows that the same amount of colloid and solvent can exist in two quite
different states, one solid, one liquefied. The solidity of the granule forces the solvent to adopt a
rough surface, creating capillary stresses that can be extremely large: anything up to about �/a
is possible, with a the radius of a colloidal particle and � the interfacial tension. Moreover, so
long as it remains solid, these capillary forces can translate into off-diagonal (shear) stresses
within the bulk of the granule. The liquid state of the same granule is a spherical droplet with
Laplace pressure 2�/R, where R is the droplet radius; so long as the interior is indeed a liquid,
this pressure (even if large) remains isotropic and no shear stresses can develop within.

In our view, the observed bistability presents compelling evidence for the jamming of a
colloidal suspension under static shear stresses [13]. These stresses are generated in a self-
consistent manner; they originate in the capillary forces at the surface of the granule, but are
transmitted internally via the jammed solid itself. However, externally applied deformation is
seemingly required to set up the jammed solid initially.

Note that, because the volume of solvent is fixed, the protrusion of particles through the
surface of a granule means that the volume fraction φ of colloid within its interior solvent is
marginally below that of the corresponding droplet. It follows that the jammed solid within a
granule is slightly dilated.

2. Experimental results

The above summary of the phenomenology is based in part on our own work on well
characterized hard-sphere suspensions. In this section we present some of this preliminary
work; a more comprehensive study will appear elsewhere [10]. Here we consider volume
fractions lying above the glass transition so that the system at rest has a small yield stress (see
comments above).

Figures 1 and 2 show how the flow of a dense colloidal suspension becomes irregular and
leads to ingress of air if the flow rate is high enough. This is a sample of ≈270 nm radius
sterically stabilized polymethylmethacrylate (PMMA) colloids, refractive index matched
(ensuring effectively hard-sphere interactions) sheared in a transparent Couette cell. The
behaviour is reversible, in the sense that returning the shear to lower rate leads to (slow)
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Figure 2. PMMA hard-sphere suspension at volume fraction � ≈ 0.63, sheared as in figure 1 but
at shear rate γ ≈ 50 s−1. The arrow shows the top surface of the suspension. Shearing at high rate
leads to the inclusion of air, while parts of the suspension appear almost solid, resisting strain.

Figure 3. Microscope image of the suspension–air interface at the edge of a PMMA hard-sphere
suspension, particle radius ≈1000 nm, at volume fraction � ≈ 0.60. The suspension has been
squeezed between approximately parallel microscope slides. The scale bar on the top left is 20 µm.

coalescence of air bubbles and eventual expulsion of the air, the sample regaining a regular
surface. However, if the high-shear-rate run is stopped abruptly, the sample remains frozen
(for hours at least) with air bubbles still in place.

Figure 3 shows a microscopy image of the interface with air of a confined ‘granule’ of a
dense colloidal suspension containing 1 µm radius particles. This was created by taking a fluid
droplet of the suspension and squeezing it between two parallel microscope slides. The overall
volume fraction of colloid does not change during this process, yet the image shows particles
protruding through the air/solvent surface (creating much higher refractive index contrast than
present in the bulk of the sample). A fully fluid sample in the same geometry would present a
featureless, smooth surface (not shown).
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(a) (b) (c)

(d) (e) (f)

Figure 4. A sample of refractive index matched PMMA hard-sphere suspension, particle radius
≈1000 nm, at � ≈ 0.61, partly ‘granulated’ by pushing a spatula through a droplet. In (a)
the granulated, opaque, solid piece of the sample can be seen; this persists indefinitely if left
undisturbed. (b)–(f) show melting of the granulated sample by contact with a droplet of a more
dilute solution (� ≈ 0.3) of the same particles (the arrow in (b) shows the initially deposited fluid
droplet). The melting takes approximately one second. The scale bar in (a) is 5 mm.

Figure 4 shows a granular lump (a) created simply by pushing a spatula by hand through
a larger drop. The solid-like nature of the granular lump is apparent. Then (b)–(f) show the
melting of the granule by contact with a fluid droplet. In this case, the added fluid droplet
contains significantly lower colloid concentration than the granular lump. Figure 5 shows a
similar effect, again involving formation of a granular lump by the same process of pushing
a spatula. Now, however, the lump remains in contact with the larger droplet from which it
was created. If the granule were pushed all the way out of the droplet it would remain frozen
even on removal of stress by stopping pushing (as shown in (a) of figure 4). But now, when
the granule comes to rest, it remelts. This can be interpreted as melting of a granule by contact
with a fluid droplet of similar volume fraction (albeit the one from which it was drawn). These
preliminary results are slightly ambiguous since we cannot rule out a slight increase in the
colloid density during the collection of the initial granule by a self-filtration effect as reported
in [9]. Nonetheless, they are consistent with reports of the melting of a granule by contact with
a fluid droplet, even when both are drawn from a fluid of the same colloid density [11]. We hope
to confirm or disprove this phenomenon in hard-sphere suspensions (rather than zeolite [11]
or flocculated colloids [8]) in future work [10].

3. Colloid rheology

In contrast to dry powders, colloidal glasses with volume fractions φ just aboveφg are generally
flowable without dilatancy—indeed these materials are often drastically shear thinning at low
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(a) (b)

(c) (d)

Figure 5. A droplet of refractive index matched PMMA hard-sphere suspension, particle radius
≈1000 nm, at � ≈ 0.61, showing granulation caused by pushing a spatula through the droplet.
The frames are taken approximately every 0.25 s. In (a) and (b) the creation of an opaque, rough-
surfaced region due to the stress applied by the spatula can be seen. On cessation of pushing with
the spatula ((e) and (f)), after a delay of about 0.5 s the granulated opaque region melts, its surface
becoming glossy and liquid-like again. This does not happen unless the granulated region is still
in contact with non-granulated fluid. The scale bar in (a) is 5 mm.

shear rates [18]. This difference can perhaps be attributed to Brownian motion. Yet the same
materials at higher shear rates and concentrations can show drastic shear thickening. Moreover,
materials just below the glass transition can also shear thicken, and in some cases an erratic
flow regime is observed [15–17], suggestive of a jamming transition. (This happens even in
samples that are apparently fluids, not glasses, when at rest.) Although hydrodynamic theories
of shear thickening have been developed [18], there is strong evidence that without Brownian
motion the flow of hard spheres is singular and leads to complete arrest in finite time [19];
details of the interaction potentials then dominate. In any case, attempts to model nonlinear
colloid rheology hydrodynamically without accounting for the underlying glass transition are
lacking an essential physical ingredient [20–22]. For example, they predict a finite zero-shear
viscosity for φg < φ < φrcp, in contrast to observation [23].

To start to fill this gap in our theoretical understanding of colloid rheology, we developed
in [20, 24] an approach to shear thickening based on the glass transition alone, which largely
ignores hydrodynamics. (Obviously it would be good to incorporate both elements at some
point; but this is a future challenge.) Our approach builds on a mode coupling theory (MCT)
for colloids under shear [22]; for related work see [25]. These models are in turn built on the
static MCT approach for the glass transition in unsheared systems [26, 27]. Static MCT can
be derived either by projection operator methods or by a one-loop self-consistent truncation
of a nonlinear dynamical field theory. The latter describes a collective diffusion equation for
the colloid number density field ρ(t) in the presence of a suitable (multiplicative) Langevin
noise. It is not easy to summarize, or even identify, the precise physical content of the MCT
closure [26] but it is widely thought to address the physics of cage formation. At high mean
densities, the effective colloidal diffusivity is self-consistently bootstrapped to zero, because
each colloid undergoes repeated collisions with an equally sluggish cage of neighbouring
particles. These interactions are controlled, ultimately, by thermodynamic forces between
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particles; MCT projects the relevant thermodynamics down to the level of quadratic density
fluctuations, which are entirely determined by the static structure factor S(q) for the quiescent
state. Among processes that MCT is known to neglect are activated hopping events whereby a
particle is ejected from its cage by an exponentially rare fluctuation. (Such processes appear,
empirically, to be less important in colloidal than in molecular glasses.)

The MCT based approach of [22] for sheared colloids predicts purely shear thinning
behaviour and no shear thickening. This lack of a shear thickening regime might result
from shortcomings in the standard approximations implicit in MCT, which do not distinguish
between hard and soft particle interactions; even under shear, the only information that enters
is S(q) for the quiescent state [26]. Shear thickening and jamming could well involve many-
body correlations, for example via the formation of load bearing force chains extending
across many particle radii [13]; these cannot be picked up in the static S(q). This deficit
is rectified, in an ad hoc but interesting way, in [20, 24] where we introduce an explicit stress
dependence to the MCT vertex. This is done within a much simplified ‘schematic’ model of the
glass transition, which nonetheless captures, in cartoon form, the more elaborate calculations
of [22].

4. Phase diagram of the schematic jamming model

The basic physics represented by this schematic model is a contest between the effects on
particle organization of the strain rate γ̇ and the shear stress σ . Strain reorganizes local
environments, and abolishes the memory effects that result from colloidal caging (which MCT
is intended to capture). In contrast to this, we argue that stress (which for simplicity is treated
in a scalarized fashion [28]) promotes arrest, by jamming particles into contact. Our schematic
model involves two free parameters, a ‘glassiness’ parameter v2, and a ‘jammability’ α. More
precisely, v2 is the static MCT vertex amplitude and controls the quiescent glass transition (for
v2 < vc = 4 the system is fluid, for v2 > 4 it is a glass; the critical value of 4 is inherited
from earlier schematic models of the quiescent state [27]). The jammability parameter α

determines the strength of the dependence of the MCT vertex on stress. The model comes in
several variants, whose details need not concern us here [24].

In figure 6 we present the phase diagram of the model in the (v2, α) plane for one of
these variants (in the terminology of [24], it is model I). Before discussing the various phases,
note that both the glassiness v2 and the jammability α can depend on all aspects of particle
interactions—even though the schematic approach offers no theory of what this dependence
should be. Therefore, as volume fraction φ is varied, some trajectory on the (v2, α) plane is
traced out, but this trajectory is interaction dependent and can vary from one colloidal system
to another. This admits a wide range of scenarios for evolution with concentration of the
steady-state flow curve σ(γ̇ ), some of which we discuss below.

Each of regimes I–VI in figure 6 corresponds to a qualitatively distinct flow curve σ(γ̇ ) for
a system undergoing simple shear, as enumerated in section 4.1 below. Note that other, more
elaborate, curves could result from different variants of the model [24]. Specifically, there are
re-entrant flow curves in regimes I, II and VI, all of which start off with a Newtonian section
(no yield stress) at small stresses. In a more general picture each of these could extend beyond
the static glass line (here, v2 = vc = 4) to give a similar flow curve, but with an additional
yield threshold at the lowest stresses. In the granulation context this is linked to an issue raised
above, of whether a droplet made by liquefying a granule has a yield stress or not. By default
we will assume not, but can allow for one by expanding our model space slightly and invoking
the corresponding additional regimes which we will call Ia, IIa, and VIa.
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Figure 6. Phase diagram on the (v2, α) plane for one variant of the schematic model of [20, 24] as
described in the text. The marked points on the axes have the following values: α∗ = 27 − 15

√
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√
2. These are defined so that the upper left

extremity of regime II lies at ( ˜̃v2, α
∗); that of regime V lies at (v∗

2 , 1); and that of regime VI at
(ṽ2, 1). These vales are specific to the model variant, as is the detailed behaviour around the point
(v2, α) = (4, 1), and the absence, in this variant of the model, of regimes Ia, IIa, and VIa as defined
in the text. Each regime has a qualitatively distinct flow curve σ(γ̇ ).

4.1. The various regimes

We now enumerate the regimes in figure 6. These are implicit in the work of [24], although
our presentation here in the form of a phase diagram is new.

4.1.1. Ultimately yielding regimes. We start with the sequence IV–VII which arises on
increasing v2 for α < 1; in this case, all curves have an ultimately shear thinning behaviour
at very high stresses. Put differently, for α < 1 the jammability is not sufficient to prevent
the ultimate yielding of the material, through a homogeneous flow mechanism, at sufficiently
large σ . The regimes are the following.

(IV) A monotonic flow curve, with either shear thinning or shear thickening (or in some
cases both). A shear-thickening example is shown in figure 7.

(V) A re-entrant, S-shaped flow curve (also shown in figure 7). This admits discontinuous
shear thickening via a shear banding mechanism in which the material creates shear bands
(with layer normals in the vorticity direction). At the discontinuous thickening transition the
system jumps from the lower to upper branch [20, 24]. Note that any decreasing sections of
the flow curve are mechanically unstable and, as a rule of thumb, are always bypassed by shear
banding [29] or a similar process.

(VI) A ‘full jamming’ flow curve. The upper left branch of the S-shaped curve has now
collided with the vertical axis, giving a vertical segment of the flow curve at zero shear rate
γ̇ but finite stress σc1 < σ < σc2 (two examples are shown in figure 7). Within this window
the material is fully arrested [30], with zero steady flow rate so long as the stress level is
maintained. (Note that creep flow, if sublinear in its time dependence, is not excluded.) This
regime describes a system that is fluid at rest, but jams on increasing stress and then unjams
again beyond σc2.
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100 γ
.

Figure 7. Flow curves for regimes IV (continuous shear thickening, solid diamonds), V
(discontinuous shear thickening, open diamonds), and VI (full jamming, open and closed circles).
The units on both axes are set by the schematic model and arbitrary for present purposes (but
see [24] for a discussion of stress and time scales). The value of α for all curves shown is 0.95.

(VII) A yielding colloidal glass. The flow curve has a yield stress σy with zero γ̇ for
σ < σy and shear thinning (downward curvature) beyond. This is the flow curve predicted for
glasses within standard MCT [22] as recovered here in the limit α = 0. It is obtained from the
full jamming curve by setting σc1 = 0 and σc2 = σy.

4.1.2. Ultimately jamming regimes. We now turn to the regimes I–III arising for α > 1. (As
visible in figure 6, these can occur in the sequence I, II, III at α = 1 only; for 1 < α < α∗ the
sequence is I, II, I, III and for α > α∗ it is I, III. But these statements are specific to the model
variant chosen.) For all of these regimes the ultimate state of the system at high stress is that
of arrest.

(I) This regime resembles full jamming (regime VI) except that σc2 is unbounded. The
material is Newtonian at low stresses but above σc1 it is jammed into a solid, and remains so
no matter how large the stress becomes. Note that there is a finite maximum shear rate for this
flow curve.

(II) This is a somewhat peculiar regime which resembles full jamming (regime IV) with
upper and lower yield stresses σc1 and σc2. However, instead of showing shear thinning for
σ > σc2 the material shear thickens again, and the flow curve makes a second collision with
the vertical axis at σc3. For all stresses beyond σc3 it remains jammed, thus sharing the same
ultimate behaviour as regime I, with a maximum flow rate. For more details of this rather
baroque regime, see [24].

(III) In this regime, with v2 > 4 and α > 1, the material cannot flow by any steady
homogeneous mechanism; the flow curve σ(γ̇ ) is simply a vertical line segment extending
from the origin to infinity. In physical terms, the material is already a glass in its quiescent
state at zero stress, and becomes ever more strongly arrested as stress is applied; it can never
be shear melted. We call this the ‘no flow’ regime.
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4.2. Trajectories in parameter space

Let us now consider how the control parameters v2, α might translate into physically
measurable quantities. For example, suppose we have hard-sphere colloids. At low
concentrations φ these are not glasses, and not jammable either; we must have α < 1 and
v2 < 4. Clearly, v2 increases with φ and we can map the schematic model onto such colloids
by demanding v2(φg) = vc = 4. We also expect α(φ) to be an increasing function—dense
colloids are more jammable—but have no clear idea of this dependence. Depending on the
form of α(φ), the observed sequences on increasing φ could be IV, V, VI, VII; or IV, V, VI, VII,
III. We assume here that α(φ) is monotonic and that regime VII, the yielding glass, is mandatory
(since it is observed in experiments); otherwise the list gets longer. However, if either condition
is relaxed, or if a more general version of the schematic model is chosen, other regimes such
as I, Ia, and VIa could also enter the sequence. Moreover, if the interaction between particles
is altered, for example by adding attractions [31], still different regime sequences could arise,
including, for example, IV, I, III.

5. The physics of granulation

Trajectories involving regimes I, Ia, and III are particularly interesting. In each case, the
ultimate fate of the material is to be jammed at high stresses. (The same applies to the more
baroque regimes II and IIa. Recall that, as defined earlier, regimes Ia and IIa differ from
regimes I and II in having a small finite yield stress replacing the Newtonian region seen at
very low stresses in regimes I and II.) The simplest such case is regime III which, as described
above, permits no steady flow at all. It seems plausible that this regime really exists in dense
colloids, since it is known to exist in dry granular materials for φ > φc: if such materials are
not allowed to expand, they will not flow homogeneously at any stress level. On increasing φ

in a colloidal system, one can therefore expect a second threshold at some value φn, beyond
the usual colloidal glass transition φg, marking a transition from the yielding glass (regime
VII) into a non-yielding glass (regime III). For φ > φn , Brownian motion is not enough to
bypass the need for dilatancy, which in turn is prevented by the fixed volume of solvent. Since
Brownian motion is increasingly ineffective at large φ, it seems plausible that φn is strictly less
than φrcp, and we assume this below. (However, in principle these might coincide, in which
case σy could be expected to diverge smoothly at φn = φrcp.)

It seems clear that, if sufficient stress is applied, even the non-meltable glass of regime
III must give way, somehow. This is likely to involve brittle fracture, plastic slip, or a related
failure mechanism. In the early stages of granulation one may indeed observe something like
brittle fracture, leading to creation of air–solvent interfaces. (The results reported in section 2
are related to, but somewhat different from, this fracture picture: air is entrained in the form of
large bubbles.) In other flow geometries the medium appears to dilate selectively in localized
shear bands, allowing these to flow plastically [9, 10]; see [32] for a related theory. (Note that
this banding mechanism requires an increase in φ through the remainder of the system—which
is increasingly difficult as φrcp is approached.)

For now, let us assume that regime III glasses are indeed brittle. In regime I, the stress-
induced jammed state is brittle in the same sense. In regime Ia likewise, one has a shear-melting
glass that later rejams into a brittle one. (Regimes II and IIa are also brittle at high σ .) If so,
there is some stress σb beyond which the vertical portion of the corresponding flow curves is
effectively terminated by brittle fracture.

It is hard to estimate σb precisely but it surely involves the solvent–air interfacial tension
�. Dimensionally σb = �/� with � some characteristic length. The smallest length in the
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problem is a, the particle radius; there could be a structural length scale (e.g., a force chain
correlation length) that would be a multiple of this. But so long as we assume that the size of the
sample does not matter, there is no other length scale than these, and hence σb � b�/a where
b is a (possibly small) prefactor. In comparison, the basic stress scale for a dense suspension
of hard-sphere colloids is kBT/a3. This sets the vertical scale on flow curves such as those of
figure 7, although the prefactor involved, like the elastic modulus G, should diverge at φrcp [2].
Accordingly we get a characteristic scale for these curves σc � G = ckBT/a3 where c is a
prefactor that diverges at φrcp. Within the glass phase (v2 > 4) experiments give values in the
range 10 < c < 1000 as φ varies between 0.58 and 0.64 [33], so values around 100 for c are
perhaps pertinent.

The two stress scales, σb for fracture and σc for homogeneous rheology, thus obey

σb

σc
� b

c

�a2

kBT
. (1)

The ratio b/c may be small, but the second factor is always very large; with (typically)
� = 0.1 N m−1, �a2/kBT is about 107(a/a0)

2 where a0 = 1 µm, a typical colloidal size.
Therefore, unless a is extremely small or else b = �/a is unexpectedly huge, there is always a
good separation of scales between the fracture stress σb and the stress scale σc connected with
the flow curve for homogeneous deformation.

We may conclude from this that the physics of shear-melting of glasses, and/or jamming
into a stress induced glass, takes place on a much lower stress scale than brittle fracture arising
from ingress of air. Assuming no further physics intervenes at intermediate stresses, the picture
of early-stage granulation that emerges is as follows. The quiescent fluid is arrested by jamming
at some stress of order σc (unless it is already a glass, which is arrested anyway). So long as we
are in regime I, Ia, or III, the material remains jammed until σ > σb, beyond which it breaks
to bits by brittle fracture. Once broken, the pieces grind against each other in a complicated
process which must somehow determine the final size of the granules, and which we do not
attempt to model here, deferring instead to the extensive literature on this topic [7].

An important component of this picture is that the broken bits of the jammed state remain
jammed. At first sight this might be paradoxical since the broken bits are only in loose
mechanical contact with one another and the stress in a flowing state of the granules could be
rather low—lower than σc even. However, the granular state persists even when flow ceases,
so we must anyway look elsewhere than the macroscopic rheological stress to explain the
persistence of granules. The culprit is of course clear [6, 7]: capillary forces.

6. The physics of granules

A similar separation of stress scales underlies the stability, including the remarkable bistability,
of granules. With a flow curve like that of regime I (recall that this is the ‘maximum shear
rate’ version of full jamming, in which σc2 has diverged), a static jam can be maintained with
any σ > σc1 � σc.

On the other hand, the capillary forces at the surface of the granule provide a stress of
order �/L, where L is the radius of mean curvature adopted by the fluid. Note that, viewed
microscopically, L is the same everywhere on those parts of the solvent surface not covered
by particles. (This must be true unless the solvent itself ceases to be fluid; the static surface
of such a fluid must have constant mean curvature.) However, L could be much smaller than
the radius R of the granule itself. Moreover, given that the solvent fully wets the particles
(which we shall assume for simplicity although other cases are possible), then once these
protrude through the surface the local curvature L will have opposite sign to the macroscopic
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curvature determined by R. That is, the parts of the interface not covered by particles must
be dimpled inwards to maintain a zero contact angle at the solvent–particle–air contact line.
The maximum radius of curvature of such dimples is of order a; this sets the upper limit to the
capillary stresses beyond which static equilibrium cannot be maintained.

Exceeding this threshold would require a granular surface so dry that colloidal particles
would be stranded there with almost no fluid around them (and would presumably be in danger
of falling off to create some nearly dry powder). But in practice, for reasonable parameter
choices, this upper limit to capillary stresses, of order �/a, far exceeds the stress of order σc

required to jam the interior of the granule.

6.1. Explanation of granulation phenomenology

We are now in a position to offer explanations of the several phenomena concerning granulation
listed in the introduction.

6.1.1. Granular stability. The preceding arguments show that there is no problem self-
consistently maintaining a jammed state of the granule in the manner outlined in the
introduction: capillary stresses at the granule surface sustain shear stresses within the jammed
solid. A simple picture is to consider a set of linear force chains [13] arranged like spokes
of a wheel, each with its last particle poking slightly through the surface; each chain carries
a compressional load caused by the interfacial tension which is equivalent to shear stresses
at 45◦ to the local (radial) force chain direction [13]. Thinking about this in more detail, the
force-chain network required to support the radial normal stresses created by capillary forces
must be more complex than just described,at least in three dimensions (if only to allow constant
L at the liquid surface). But so long as there is such a network, the capillary forces can indeed
create a compressive stress throughout the granule that is not isotropic, much larger than σc in
magnitude, and hence capable of sustaining the jammed state.

The above arguments apply throughout regimes I, Ia, II, IIa, and III. (These are the regimes
in which no homogeneous flow is possible at high stresses.) It is altogether more delicate to
argue for self-consistently jammed granules in regime VI (or its variant VIa). Recall that this
is the full jamming regime with re-entrant melting (figure 7). Here the jammed state melts
again on the stress scale σc2 � σc, and hence, in order to maintain jamming, the capillary
induced shear stress must not exceed this scale. If �/R < σc,2 the required stress window
looks easily achieved, but if not, some fine tuning of the surface structure of the granule is
needed to sustain it: the microscopic liquid interface must be unnaturally flat on the scale of
the macroscopic granular shape. We do not know whether such fine tuning occurs in practice,
nor, if it does, whether this imparts some special mechanical delicacy to the granules. Since
the very weak curvature required anyway has opposite sign to the macroscopic curvature of
the granule (as explained above), perhaps it makes no difference. In any case, this subtlety
does not affect regimes I–III, in which there is no re-entrant melting of the homogeneous state
at high stresses.

Note also a possible lower limit to the size of a jammed granule: if too small, the decrease
in bulk volume fraction caused by particles protruding through the surface could mean that a
jammed state is no longer sustainable in the interior. This decrease is of order δφ/φ ∼ αa/R
where α � 1 is the fractional volume of each surface particle that protrudes through the
surface. This lower limit might be relevant to determining the granule sizes actually observed
in granulation, but so long as it is exceeded, the above discussion is unchanged.

2 For a = 1 µm and b = 100 (see above), the condition �/R < σc requires gigantic (20 cm) granules; but for
a = 0.1 µm this becomes a more reasonable requirement, R > 200 µm.
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6.1.2. Bistability. Even for a small granule with �/R � σc, there is no difficulty, in any of
the relevant regimes, in explaining the bistability between the granule and the liquefied droplet
state that was described in the introduction. For, once the interior of a droplet is liquefied,
its surface is spherical, and the capillary forces produce only an isotropic Laplace pressure in
the interior. Although this may be formally large on the scale of σc, such a diagonal stress
contribution is borne by the incompressibility of solvent and particles, not a contact network,
and cannot jam the system. Thus the onset of granulation involves setting up a shear stress
and/or a normal stress difference, not just a pressure; this anisotropic stress jams the bulk
suspension, and promotes its brittle fracture. Subsequently, capillary forces can maintain the
local stress anisotropies that were set up initially within the granular interior, but they cannot
create these from scratch.

Clearly, bistability does require that the volume fraction of the colloid is low enough
to sustain a flowable state at low stresses—as happens for example in regime I of the phase
diagram, figure 6. At extremely high colloid concentrations (for example in regime III) all
states are jammed. Granulation in this limit is relatively trivial; a granule is maintained solid
by capillary forces but would also be solid without them. Similar physics is expected in
fluidized bed granulation where a small amount of fluid is added to a dry powder (see footnote
1); this will bind the particles into agglomerates stabilized by capillary bridges, but there is
not generally enough fluid to create a spherical droplet of flowable particle concentration and
bistability is presumably absent.

6.1.3. Coalescence of granule and droplet. The coalescence of a flowable droplet and a
granule is also explicable in this picture. Due to the inward curvature at the liquid surface of
a granule (see above) the Laplace pressure in a granule is smaller than in a flowable droplet.
Placing the two in contact will thus lead to a transfer of solvent and the collapse of capillary
stress in the granule; it can then melt and coalesce with the adjacent droplet.

6.1.4. Effect of vibration. The conversion of a granule to a flowing droplet by vibration
presumably involves melting of the contact network. This is consistent with the idea of
fragility [13] in which the network has a structure specifically adapted to the stresses applied.
It is therefore quite possible that, even in an ultimately jamming regime such as I or III (as
favoured above to explain the stability of a granule), a shear stress of order σc applied as an
‘incompatible stress’ will melt it. (An incompatible stress is a shear stress in an orientation
other than the one the network has evolved to support [13]; vibration would supply this.)
Alternatively, in regime VI (and also VIa), any stress large compared with σc will give the
same effect. More complex explanations, involving disruption of the solvent/air interface by
vibration, may also be possible.

7. Concluding remarks

The phenomenology of early-stage granulation in dense colloidal suspensions appears to
be broadly explicable within a framework that combines capillary forces at the air–solvent
interfaces with a schematic model of colloidal jamming. Several scenarios for this were
developed above. Most of these involved a specific form of jamming in which simple shear-
melting (of a glass) and/or re-entrant shear-melting (of a stress-induced solid) are excluded.
In materials governed by such scenarios, sustained shear was argued to lead to brittle fracture,
creating large amounts of air–solvent interface. The capillary forces generated at this interface
are sufficient to maintain a jammed state of the granules which are then internally solidified
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by shear stresses. Bistability between a granule and a flowable droplet is then explicable,
as is vibration-induced melting, and granule/droplet coalescence. The observation of such
phenomena [8, 9, 11, 12] is perhaps some of the strongest evidence for jamming, in the
specific sense of arrest caused by anisotropic stresses in dense colloids [13, 20, 24]. The
preliminary results of section 2 suggest that this picture extends to well characterized hard-
sphere colloids as well as to systems with attractive interactions; however, these experiments
are not yet conclusive and will be reported on more fully elsewhere [10].

Since the details of the colloidal rheology depend strongly on concentration and on colloid–
colloid interactions, it is possible that the favoured ‘brittle’ form of jamming arises only in
a limited parameter range. It would be very interesting to search for this directly in stress-
controlled bulk rheology (which allows a jammed system to come to rest at finite stress).
One could then see whether the onset of granulation under sustained shearing correlates with
specific regimes of jamming as developed in the phase diagram of figure 6, and also whether
the sequence of these regimes is in accord with the scenarios developed in section 4.2.

Finally, we remark that our glass-based theory of colloidal jamming is appropriate in
systems where jamming consists of the collective arrest of Brownian motion. In those colloidal
suspensions where such motion is anyway negligible,one should formulate a different approach
in which the jamming arises by self-organization of a mechanical contact network [13]. This
will introduce different scalings for yield stress (for example) with particle size and density
from those estimated from our MCT modelling. Qualitatively, however, much of our physical
picture is based on the general notion of stress induced solidification and/or fluidization rather
than the requirement of a Brownian glass transition as such. It is therefore possible that much
of the same physics survives into the non-Brownian case.
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